Having forgotten to blog about the release of PyNN 0.8.0, here is an announcement of PyNN 0.8.1!
For all the API changes between PyNN 0.7 and 0.8 see the release notes for 0.8.0. The main change with PyNN 0.8.1 is support for NEST 2.10.
PyNN 0.8.1 can be installed with pip from PyPI.
PyNN (pronounced 'pine' ) is a simulator-independent language for building neuronal network models.
In other words, you can write the code for a model once, using the PyNN API and the Python programming language, and then run it without modification on any simulator that PyNN supports (currently NEURON, NEST and Brian as well as the SpiNNaker and BrainScaleS neuromorphic hardware systems).
Even if you don't wish to run simulations on multiple simulators, you may benefit from writing your simulation code using PyNN's powerful, high-level interface. In this case, you can use any neuron or synapse model supported by your simulator, and are not restricted to the standard models.
The code is released under the CeCILL licence (GPL-compatible).
For all the API changes between PyNN 0.7 and 0.8 see the release notes for 0.8.0. The main change with PyNN 0.8.1 is support for NEST 2.10.
PyNN 0.8.1 can be installed with pip from PyPI.
What is PyNN?
PyNN (pronounced 'pine' ) is a simulator-independent language for building neuronal network models.
In other words, you can write the code for a model once, using the PyNN API and the Python programming language, and then run it without modification on any simulator that PyNN supports (currently NEURON, NEST and Brian as well as the SpiNNaker and BrainScaleS neuromorphic hardware systems).
Even if you don't wish to run simulations on multiple simulators, you may benefit from writing your simulation code using PyNN's powerful, high-level interface. In this case, you can use any neuron or synapse model supported by your simulator, and are not restricted to the standard models.
The code is released under the CeCILL licence (GPL-compatible).
No comments:
Post a Comment